- minterm
- минтерм
Новый англо-русский словарь. 2013.
Новый англо-русский словарь. 2013.
Minterm — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar … Wikipedia Español
Minterm — Als Vollkonjunktion (auch: Minterm, Miniterm oder Elementarkonjunktion) bezeichnet man in der Aussagenlogik einen speziellen Konjunktionsterm, d. h. eine Anzahl von Buchstaben (Literalen), die alle durch ein logisches und ( ) verknüpft sind.… … Deutsch Wikipedia
minterm — noun In Boolean algebra, a product term in which each variable appears once (in either its complemented or uncomplemented form). A Boolean function can be expressed, canonically, as a sum of minterms, where each minterm corresponds to a row (of… … Wiktionary
minterm — elementarioji konjunkcinė forma statusas T sritis automatika atitikmenys: angl. minterm vok. Vollkonjunktion, f rus. элементарная конъюнктивная форма, f pranc. conjonction totale, f … Automatikos terminų žodynas
Delay Insensitive Minterm Synthesis — Invented by David E. Muller, the DIMS (Delay Insensitive Minterm Synthesis) system[1] is an asynchronous design methodology making the least possible timing assumptions. Assuming only the Quasi Delay Insensitive delay model the generated designs… … Wikipedia
K-Diagramm — Bild 1 1: Karnaugh Veitch Diagramm: ¬AB¬C¬D ∨ A¬B¬C¬D ∨ A¬B¬CD ∨ A¬BC¬D ∨ A¬BCD ∨ AB¬C¬D ∨ ABC¬D ∨ ABCD = AC ∨ B¬C¬D ∨ A¬B … Deutsch Wikipedia
KV-Algorithmus — Bild 1 1: Karnaugh Veitch Diagramm: ¬AB¬C¬D ∨ A¬B¬C¬D ∨ A¬B¬CD ∨ A¬BC¬D ∨ A¬BCD ∨ AB¬C¬D ∨ ABC¬D ∨ ABCD = AC ∨ B¬C¬D ∨ A¬B … Deutsch Wikipedia
KV-Diagramm — Bild 1 1: Karnaugh Veitch Diagramm: ¬AB¬C¬D ∨ A¬B¬C¬D ∨ A¬B¬CD ∨ A¬BC¬D ∨ A¬BCD ∨ AB¬C¬D ∨ ABC¬D ∨ ABCD = AC ∨ B¬C¬D ∨ A¬B … Deutsch Wikipedia
KV-Tafel — Bild 1 1: Karnaugh Veitch Diagramm: ¬AB¬C¬D ∨ A¬B¬C¬D ∨ A¬B¬CD ∨ A¬BC¬D ∨ A¬BCD ∨ AB¬C¬D ∨ ABC¬D ∨ ABCD = AC ∨ B¬C¬D ∨ A¬B … Deutsch Wikipedia
Karnaugh-Diagramm — Bild 1 1: Karnaugh Veitch Diagramm: ¬AB¬C¬D ∨ A¬B¬C¬D ∨ A¬B¬CD ∨ A¬BC¬D ∨ A¬BCD ∨ AB¬C¬D ∨ ABC¬D ∨ ABCD = AC ∨ B¬C¬D ∨ A¬B … Deutsch Wikipedia
Canonical form (Boolean algebra) — In Boolean algebra, any Boolean function can be expressed in a canonical form using the dual concepts of minterms and maxterms. Minterms are called products because they are the logical AND of a set of variables, and maxterms are called sums… … Wikipedia